direct product, metabelian, nilpotent (class 2), monomial, 2-elementary
Aliases: C5×C23.33C23, C10.1502+ (1+4), C10.1102- (1+4), C4○D4⋊5C20, (C4×D4)⋊6C10, D4⋊8(C2×C20), (C4×Q8)⋊6C10, Q8⋊7(C2×C20), (D4×C20)⋊35C2, (Q8×C20)⋊26C2, C2.9(C23×C20), C42⋊C2⋊7C10, C42.33(C2×C10), C10.82(C23×C4), C4.21(C22×C20), (C2×C10).340C24, (C2×C20).711C23, (C4×C20).276C22, C20.225(C22×C4), C22.3(C22×C20), C2.2(C5×2+ (1+4)), C2.2(C5×2- (1+4)), (D4×C10).333C22, C22.13(C23×C10), C23.32(C22×C10), (Q8×C10).285C22, (C22×C10).256C23, (C22×C20).443C22, (C2×C4)⋊5(C2×C20), (C10×C4⋊C4)⋊40C2, (C2×C4⋊C4)⋊13C10, (C2×C20)⋊39(C2×C4), (C5×C4○D4)⋊17C4, (C5×D4)⋊38(C2×C4), (C5×Q8)⋊34(C2×C4), C4⋊C4.83(C2×C10), (C2×C4○D4).9C10, (C10×C4○D4).23C2, (C2×D4).79(C2×C10), (C2×Q8).73(C2×C10), (C5×C42⋊C2)⋊28C2, (C5×C4⋊C4).408C22, C22⋊C4.30(C2×C10), (C2×C4).57(C22×C10), (C22×C4).11(C2×C10), (C2×C10).135(C22×C4), (C5×C22⋊C4).161C22, SmallGroup(320,1522)
Series: Derived ►Chief ►Lower central ►Upper central
Subgroups: 370 in 294 conjugacy classes, 242 normal (20 characteristic)
C1, C2 [×3], C2 [×6], C4 [×8], C4 [×8], C22, C22 [×6], C22 [×6], C5, C2×C4, C2×C4 [×23], C2×C4 [×6], D4 [×12], Q8 [×4], C23 [×3], C10 [×3], C10 [×6], C42 [×6], C22⋊C4 [×6], C4⋊C4, C4⋊C4 [×9], C22×C4 [×9], C2×D4 [×3], C2×Q8, C4○D4 [×8], C20 [×8], C20 [×8], C2×C10, C2×C10 [×6], C2×C10 [×6], C2×C4⋊C4 [×3], C42⋊C2 [×3], C4×D4 [×6], C4×Q8 [×2], C2×C4○D4, C2×C20, C2×C20 [×23], C2×C20 [×6], C5×D4 [×12], C5×Q8 [×4], C22×C10 [×3], C23.33C23, C4×C20 [×6], C5×C22⋊C4 [×6], C5×C4⋊C4, C5×C4⋊C4 [×9], C22×C20 [×9], D4×C10 [×3], Q8×C10, C5×C4○D4 [×8], C10×C4⋊C4 [×3], C5×C42⋊C2 [×3], D4×C20 [×6], Q8×C20 [×2], C10×C4○D4, C5×C23.33C23
Quotients:
C1, C2 [×15], C4 [×8], C22 [×35], C5, C2×C4 [×28], C23 [×15], C10 [×15], C22×C4 [×14], C24, C20 [×8], C2×C10 [×35], C23×C4, 2+ (1+4), 2- (1+4), C2×C20 [×28], C22×C10 [×15], C23.33C23, C22×C20 [×14], C23×C10, C23×C20, C5×2+ (1+4), C5×2- (1+4), C5×C23.33C23
Generators and relations
G = < a,b,c,d,e,f,g | a5=b2=c2=d2=f2=1, e2=d, g2=c, ab=ba, ac=ca, ad=da, ae=ea, af=fa, ag=ga, fbf=bc=cb, bd=db, be=eb, bg=gb, cd=dc, geg-1=ce=ec, gfg-1=cf=fc, cg=gc, de=ed, df=fd, dg=gd, ef=fe >
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)(81 82 83 84 85)(86 87 88 89 90)(91 92 93 94 95)(96 97 98 99 100)(101 102 103 104 105)(106 107 108 109 110)(111 112 113 114 115)(116 117 118 119 120)(121 122 123 124 125)(126 127 128 129 130)(131 132 133 134 135)(136 137 138 139 140)(141 142 143 144 145)(146 147 148 149 150)(151 152 153 154 155)(156 157 158 159 160)
(1 76)(2 77)(3 78)(4 79)(5 80)(6 110)(7 106)(8 107)(9 108)(10 109)(11 115)(12 111)(13 112)(14 113)(15 114)(16 103)(17 104)(18 105)(19 101)(20 102)(21 81)(22 82)(23 83)(24 84)(25 85)(26 86)(27 87)(28 88)(29 89)(30 90)(31 91)(32 92)(33 93)(34 94)(35 95)(36 75)(37 71)(38 72)(39 73)(40 74)(41 68)(42 69)(43 70)(44 66)(45 67)(46 64)(47 65)(48 61)(49 62)(50 63)(51 57)(52 58)(53 59)(54 60)(55 56)(96 156)(97 157)(98 158)(99 159)(100 160)(116 155)(117 151)(118 152)(119 153)(120 154)(121 148)(122 149)(123 150)(124 146)(125 147)(126 144)(127 145)(128 141)(129 142)(130 143)(131 137)(132 138)(133 139)(134 140)(135 136)
(1 35)(2 31)(3 32)(4 33)(5 34)(6 16)(7 17)(8 18)(9 19)(10 20)(11 156)(12 157)(13 158)(14 159)(15 160)(21 28)(22 29)(23 30)(24 26)(25 27)(36 55)(37 51)(38 52)(39 53)(40 54)(41 48)(42 49)(43 50)(44 46)(45 47)(56 75)(57 71)(58 72)(59 73)(60 74)(61 68)(62 69)(63 70)(64 66)(65 67)(76 95)(77 91)(78 92)(79 93)(80 94)(81 88)(82 89)(83 90)(84 86)(85 87)(96 115)(97 111)(98 112)(99 113)(100 114)(101 108)(102 109)(103 110)(104 106)(105 107)(116 135)(117 131)(118 132)(119 133)(120 134)(121 128)(122 129)(123 130)(124 126)(125 127)(136 155)(137 151)(138 152)(139 153)(140 154)(141 148)(142 149)(143 150)(144 146)(145 147)
(1 30)(2 26)(3 27)(4 28)(5 29)(6 156)(7 157)(8 158)(9 159)(10 160)(11 16)(12 17)(13 18)(14 19)(15 20)(21 33)(22 34)(23 35)(24 31)(25 32)(36 50)(37 46)(38 47)(39 48)(40 49)(41 53)(42 54)(43 55)(44 51)(45 52)(56 70)(57 66)(58 67)(59 68)(60 69)(61 73)(62 74)(63 75)(64 71)(65 72)(76 90)(77 86)(78 87)(79 88)(80 89)(81 93)(82 94)(83 95)(84 91)(85 92)(96 110)(97 106)(98 107)(99 108)(100 109)(101 113)(102 114)(103 115)(104 111)(105 112)(116 130)(117 126)(118 127)(119 128)(120 129)(121 133)(122 134)(123 135)(124 131)(125 132)(136 150)(137 146)(138 147)(139 148)(140 149)(141 153)(142 154)(143 155)(144 151)(145 152)
(1 110 30 96)(2 106 26 97)(3 107 27 98)(4 108 28 99)(5 109 29 100)(6 90 156 76)(7 86 157 77)(8 87 158 78)(9 88 159 79)(10 89 160 80)(11 95 16 83)(12 91 17 84)(13 92 18 85)(14 93 19 81)(15 94 20 82)(21 113 33 101)(22 114 34 102)(23 115 35 103)(24 111 31 104)(25 112 32 105)(36 130 50 116)(37 126 46 117)(38 127 47 118)(39 128 48 119)(40 129 49 120)(41 133 53 121)(42 134 54 122)(43 135 55 123)(44 131 51 124)(45 132 52 125)(56 150 70 136)(57 146 66 137)(58 147 67 138)(59 148 68 139)(60 149 69 140)(61 153 73 141)(62 154 74 142)(63 155 75 143)(64 151 71 144)(65 152 72 145)
(1 35)(2 31)(3 32)(4 33)(5 34)(21 28)(22 29)(23 30)(24 26)(25 27)(36 55)(37 51)(38 52)(39 53)(40 54)(41 48)(42 49)(43 50)(44 46)(45 47)(96 115)(97 111)(98 112)(99 113)(100 114)(101 108)(102 109)(103 110)(104 106)(105 107)(116 135)(117 131)(118 132)(119 133)(120 134)(121 128)(122 129)(123 130)(124 126)(125 127)
(1 56 35 75)(2 57 31 71)(3 58 32 72)(4 59 33 73)(5 60 34 74)(6 130 16 123)(7 126 17 124)(8 127 18 125)(9 128 19 121)(10 129 20 122)(11 135 156 116)(12 131 157 117)(13 132 158 118)(14 133 159 119)(15 134 160 120)(21 61 28 68)(22 62 29 69)(23 63 30 70)(24 64 26 66)(25 65 27 67)(36 76 55 95)(37 77 51 91)(38 78 52 92)(39 79 53 93)(40 80 54 94)(41 81 48 88)(42 82 49 89)(43 83 50 90)(44 84 46 86)(45 85 47 87)(96 155 115 136)(97 151 111 137)(98 152 112 138)(99 153 113 139)(100 154 114 140)(101 148 108 141)(102 149 109 142)(103 150 110 143)(104 146 106 144)(105 147 107 145)
G:=sub<Sym(160)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125)(126,127,128,129,130)(131,132,133,134,135)(136,137,138,139,140)(141,142,143,144,145)(146,147,148,149,150)(151,152,153,154,155)(156,157,158,159,160), (1,76)(2,77)(3,78)(4,79)(5,80)(6,110)(7,106)(8,107)(9,108)(10,109)(11,115)(12,111)(13,112)(14,113)(15,114)(16,103)(17,104)(18,105)(19,101)(20,102)(21,81)(22,82)(23,83)(24,84)(25,85)(26,86)(27,87)(28,88)(29,89)(30,90)(31,91)(32,92)(33,93)(34,94)(35,95)(36,75)(37,71)(38,72)(39,73)(40,74)(41,68)(42,69)(43,70)(44,66)(45,67)(46,64)(47,65)(48,61)(49,62)(50,63)(51,57)(52,58)(53,59)(54,60)(55,56)(96,156)(97,157)(98,158)(99,159)(100,160)(116,155)(117,151)(118,152)(119,153)(120,154)(121,148)(122,149)(123,150)(124,146)(125,147)(126,144)(127,145)(128,141)(129,142)(130,143)(131,137)(132,138)(133,139)(134,140)(135,136), (1,35)(2,31)(3,32)(4,33)(5,34)(6,16)(7,17)(8,18)(9,19)(10,20)(11,156)(12,157)(13,158)(14,159)(15,160)(21,28)(22,29)(23,30)(24,26)(25,27)(36,55)(37,51)(38,52)(39,53)(40,54)(41,48)(42,49)(43,50)(44,46)(45,47)(56,75)(57,71)(58,72)(59,73)(60,74)(61,68)(62,69)(63,70)(64,66)(65,67)(76,95)(77,91)(78,92)(79,93)(80,94)(81,88)(82,89)(83,90)(84,86)(85,87)(96,115)(97,111)(98,112)(99,113)(100,114)(101,108)(102,109)(103,110)(104,106)(105,107)(116,135)(117,131)(118,132)(119,133)(120,134)(121,128)(122,129)(123,130)(124,126)(125,127)(136,155)(137,151)(138,152)(139,153)(140,154)(141,148)(142,149)(143,150)(144,146)(145,147), (1,30)(2,26)(3,27)(4,28)(5,29)(6,156)(7,157)(8,158)(9,159)(10,160)(11,16)(12,17)(13,18)(14,19)(15,20)(21,33)(22,34)(23,35)(24,31)(25,32)(36,50)(37,46)(38,47)(39,48)(40,49)(41,53)(42,54)(43,55)(44,51)(45,52)(56,70)(57,66)(58,67)(59,68)(60,69)(61,73)(62,74)(63,75)(64,71)(65,72)(76,90)(77,86)(78,87)(79,88)(80,89)(81,93)(82,94)(83,95)(84,91)(85,92)(96,110)(97,106)(98,107)(99,108)(100,109)(101,113)(102,114)(103,115)(104,111)(105,112)(116,130)(117,126)(118,127)(119,128)(120,129)(121,133)(122,134)(123,135)(124,131)(125,132)(136,150)(137,146)(138,147)(139,148)(140,149)(141,153)(142,154)(143,155)(144,151)(145,152), (1,110,30,96)(2,106,26,97)(3,107,27,98)(4,108,28,99)(5,109,29,100)(6,90,156,76)(7,86,157,77)(8,87,158,78)(9,88,159,79)(10,89,160,80)(11,95,16,83)(12,91,17,84)(13,92,18,85)(14,93,19,81)(15,94,20,82)(21,113,33,101)(22,114,34,102)(23,115,35,103)(24,111,31,104)(25,112,32,105)(36,130,50,116)(37,126,46,117)(38,127,47,118)(39,128,48,119)(40,129,49,120)(41,133,53,121)(42,134,54,122)(43,135,55,123)(44,131,51,124)(45,132,52,125)(56,150,70,136)(57,146,66,137)(58,147,67,138)(59,148,68,139)(60,149,69,140)(61,153,73,141)(62,154,74,142)(63,155,75,143)(64,151,71,144)(65,152,72,145), (1,35)(2,31)(3,32)(4,33)(5,34)(21,28)(22,29)(23,30)(24,26)(25,27)(36,55)(37,51)(38,52)(39,53)(40,54)(41,48)(42,49)(43,50)(44,46)(45,47)(96,115)(97,111)(98,112)(99,113)(100,114)(101,108)(102,109)(103,110)(104,106)(105,107)(116,135)(117,131)(118,132)(119,133)(120,134)(121,128)(122,129)(123,130)(124,126)(125,127), (1,56,35,75)(2,57,31,71)(3,58,32,72)(4,59,33,73)(5,60,34,74)(6,130,16,123)(7,126,17,124)(8,127,18,125)(9,128,19,121)(10,129,20,122)(11,135,156,116)(12,131,157,117)(13,132,158,118)(14,133,159,119)(15,134,160,120)(21,61,28,68)(22,62,29,69)(23,63,30,70)(24,64,26,66)(25,65,27,67)(36,76,55,95)(37,77,51,91)(38,78,52,92)(39,79,53,93)(40,80,54,94)(41,81,48,88)(42,82,49,89)(43,83,50,90)(44,84,46,86)(45,85,47,87)(96,155,115,136)(97,151,111,137)(98,152,112,138)(99,153,113,139)(100,154,114,140)(101,148,108,141)(102,149,109,142)(103,150,110,143)(104,146,106,144)(105,147,107,145)>;
G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125)(126,127,128,129,130)(131,132,133,134,135)(136,137,138,139,140)(141,142,143,144,145)(146,147,148,149,150)(151,152,153,154,155)(156,157,158,159,160), (1,76)(2,77)(3,78)(4,79)(5,80)(6,110)(7,106)(8,107)(9,108)(10,109)(11,115)(12,111)(13,112)(14,113)(15,114)(16,103)(17,104)(18,105)(19,101)(20,102)(21,81)(22,82)(23,83)(24,84)(25,85)(26,86)(27,87)(28,88)(29,89)(30,90)(31,91)(32,92)(33,93)(34,94)(35,95)(36,75)(37,71)(38,72)(39,73)(40,74)(41,68)(42,69)(43,70)(44,66)(45,67)(46,64)(47,65)(48,61)(49,62)(50,63)(51,57)(52,58)(53,59)(54,60)(55,56)(96,156)(97,157)(98,158)(99,159)(100,160)(116,155)(117,151)(118,152)(119,153)(120,154)(121,148)(122,149)(123,150)(124,146)(125,147)(126,144)(127,145)(128,141)(129,142)(130,143)(131,137)(132,138)(133,139)(134,140)(135,136), (1,35)(2,31)(3,32)(4,33)(5,34)(6,16)(7,17)(8,18)(9,19)(10,20)(11,156)(12,157)(13,158)(14,159)(15,160)(21,28)(22,29)(23,30)(24,26)(25,27)(36,55)(37,51)(38,52)(39,53)(40,54)(41,48)(42,49)(43,50)(44,46)(45,47)(56,75)(57,71)(58,72)(59,73)(60,74)(61,68)(62,69)(63,70)(64,66)(65,67)(76,95)(77,91)(78,92)(79,93)(80,94)(81,88)(82,89)(83,90)(84,86)(85,87)(96,115)(97,111)(98,112)(99,113)(100,114)(101,108)(102,109)(103,110)(104,106)(105,107)(116,135)(117,131)(118,132)(119,133)(120,134)(121,128)(122,129)(123,130)(124,126)(125,127)(136,155)(137,151)(138,152)(139,153)(140,154)(141,148)(142,149)(143,150)(144,146)(145,147), (1,30)(2,26)(3,27)(4,28)(5,29)(6,156)(7,157)(8,158)(9,159)(10,160)(11,16)(12,17)(13,18)(14,19)(15,20)(21,33)(22,34)(23,35)(24,31)(25,32)(36,50)(37,46)(38,47)(39,48)(40,49)(41,53)(42,54)(43,55)(44,51)(45,52)(56,70)(57,66)(58,67)(59,68)(60,69)(61,73)(62,74)(63,75)(64,71)(65,72)(76,90)(77,86)(78,87)(79,88)(80,89)(81,93)(82,94)(83,95)(84,91)(85,92)(96,110)(97,106)(98,107)(99,108)(100,109)(101,113)(102,114)(103,115)(104,111)(105,112)(116,130)(117,126)(118,127)(119,128)(120,129)(121,133)(122,134)(123,135)(124,131)(125,132)(136,150)(137,146)(138,147)(139,148)(140,149)(141,153)(142,154)(143,155)(144,151)(145,152), (1,110,30,96)(2,106,26,97)(3,107,27,98)(4,108,28,99)(5,109,29,100)(6,90,156,76)(7,86,157,77)(8,87,158,78)(9,88,159,79)(10,89,160,80)(11,95,16,83)(12,91,17,84)(13,92,18,85)(14,93,19,81)(15,94,20,82)(21,113,33,101)(22,114,34,102)(23,115,35,103)(24,111,31,104)(25,112,32,105)(36,130,50,116)(37,126,46,117)(38,127,47,118)(39,128,48,119)(40,129,49,120)(41,133,53,121)(42,134,54,122)(43,135,55,123)(44,131,51,124)(45,132,52,125)(56,150,70,136)(57,146,66,137)(58,147,67,138)(59,148,68,139)(60,149,69,140)(61,153,73,141)(62,154,74,142)(63,155,75,143)(64,151,71,144)(65,152,72,145), (1,35)(2,31)(3,32)(4,33)(5,34)(21,28)(22,29)(23,30)(24,26)(25,27)(36,55)(37,51)(38,52)(39,53)(40,54)(41,48)(42,49)(43,50)(44,46)(45,47)(96,115)(97,111)(98,112)(99,113)(100,114)(101,108)(102,109)(103,110)(104,106)(105,107)(116,135)(117,131)(118,132)(119,133)(120,134)(121,128)(122,129)(123,130)(124,126)(125,127), (1,56,35,75)(2,57,31,71)(3,58,32,72)(4,59,33,73)(5,60,34,74)(6,130,16,123)(7,126,17,124)(8,127,18,125)(9,128,19,121)(10,129,20,122)(11,135,156,116)(12,131,157,117)(13,132,158,118)(14,133,159,119)(15,134,160,120)(21,61,28,68)(22,62,29,69)(23,63,30,70)(24,64,26,66)(25,65,27,67)(36,76,55,95)(37,77,51,91)(38,78,52,92)(39,79,53,93)(40,80,54,94)(41,81,48,88)(42,82,49,89)(43,83,50,90)(44,84,46,86)(45,85,47,87)(96,155,115,136)(97,151,111,137)(98,152,112,138)(99,153,113,139)(100,154,114,140)(101,148,108,141)(102,149,109,142)(103,150,110,143)(104,146,106,144)(105,147,107,145) );
G=PermutationGroup([(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80),(81,82,83,84,85),(86,87,88,89,90),(91,92,93,94,95),(96,97,98,99,100),(101,102,103,104,105),(106,107,108,109,110),(111,112,113,114,115),(116,117,118,119,120),(121,122,123,124,125),(126,127,128,129,130),(131,132,133,134,135),(136,137,138,139,140),(141,142,143,144,145),(146,147,148,149,150),(151,152,153,154,155),(156,157,158,159,160)], [(1,76),(2,77),(3,78),(4,79),(5,80),(6,110),(7,106),(8,107),(9,108),(10,109),(11,115),(12,111),(13,112),(14,113),(15,114),(16,103),(17,104),(18,105),(19,101),(20,102),(21,81),(22,82),(23,83),(24,84),(25,85),(26,86),(27,87),(28,88),(29,89),(30,90),(31,91),(32,92),(33,93),(34,94),(35,95),(36,75),(37,71),(38,72),(39,73),(40,74),(41,68),(42,69),(43,70),(44,66),(45,67),(46,64),(47,65),(48,61),(49,62),(50,63),(51,57),(52,58),(53,59),(54,60),(55,56),(96,156),(97,157),(98,158),(99,159),(100,160),(116,155),(117,151),(118,152),(119,153),(120,154),(121,148),(122,149),(123,150),(124,146),(125,147),(126,144),(127,145),(128,141),(129,142),(130,143),(131,137),(132,138),(133,139),(134,140),(135,136)], [(1,35),(2,31),(3,32),(4,33),(5,34),(6,16),(7,17),(8,18),(9,19),(10,20),(11,156),(12,157),(13,158),(14,159),(15,160),(21,28),(22,29),(23,30),(24,26),(25,27),(36,55),(37,51),(38,52),(39,53),(40,54),(41,48),(42,49),(43,50),(44,46),(45,47),(56,75),(57,71),(58,72),(59,73),(60,74),(61,68),(62,69),(63,70),(64,66),(65,67),(76,95),(77,91),(78,92),(79,93),(80,94),(81,88),(82,89),(83,90),(84,86),(85,87),(96,115),(97,111),(98,112),(99,113),(100,114),(101,108),(102,109),(103,110),(104,106),(105,107),(116,135),(117,131),(118,132),(119,133),(120,134),(121,128),(122,129),(123,130),(124,126),(125,127),(136,155),(137,151),(138,152),(139,153),(140,154),(141,148),(142,149),(143,150),(144,146),(145,147)], [(1,30),(2,26),(3,27),(4,28),(5,29),(6,156),(7,157),(8,158),(9,159),(10,160),(11,16),(12,17),(13,18),(14,19),(15,20),(21,33),(22,34),(23,35),(24,31),(25,32),(36,50),(37,46),(38,47),(39,48),(40,49),(41,53),(42,54),(43,55),(44,51),(45,52),(56,70),(57,66),(58,67),(59,68),(60,69),(61,73),(62,74),(63,75),(64,71),(65,72),(76,90),(77,86),(78,87),(79,88),(80,89),(81,93),(82,94),(83,95),(84,91),(85,92),(96,110),(97,106),(98,107),(99,108),(100,109),(101,113),(102,114),(103,115),(104,111),(105,112),(116,130),(117,126),(118,127),(119,128),(120,129),(121,133),(122,134),(123,135),(124,131),(125,132),(136,150),(137,146),(138,147),(139,148),(140,149),(141,153),(142,154),(143,155),(144,151),(145,152)], [(1,110,30,96),(2,106,26,97),(3,107,27,98),(4,108,28,99),(5,109,29,100),(6,90,156,76),(7,86,157,77),(8,87,158,78),(9,88,159,79),(10,89,160,80),(11,95,16,83),(12,91,17,84),(13,92,18,85),(14,93,19,81),(15,94,20,82),(21,113,33,101),(22,114,34,102),(23,115,35,103),(24,111,31,104),(25,112,32,105),(36,130,50,116),(37,126,46,117),(38,127,47,118),(39,128,48,119),(40,129,49,120),(41,133,53,121),(42,134,54,122),(43,135,55,123),(44,131,51,124),(45,132,52,125),(56,150,70,136),(57,146,66,137),(58,147,67,138),(59,148,68,139),(60,149,69,140),(61,153,73,141),(62,154,74,142),(63,155,75,143),(64,151,71,144),(65,152,72,145)], [(1,35),(2,31),(3,32),(4,33),(5,34),(21,28),(22,29),(23,30),(24,26),(25,27),(36,55),(37,51),(38,52),(39,53),(40,54),(41,48),(42,49),(43,50),(44,46),(45,47),(96,115),(97,111),(98,112),(99,113),(100,114),(101,108),(102,109),(103,110),(104,106),(105,107),(116,135),(117,131),(118,132),(119,133),(120,134),(121,128),(122,129),(123,130),(124,126),(125,127)], [(1,56,35,75),(2,57,31,71),(3,58,32,72),(4,59,33,73),(5,60,34,74),(6,130,16,123),(7,126,17,124),(8,127,18,125),(9,128,19,121),(10,129,20,122),(11,135,156,116),(12,131,157,117),(13,132,158,118),(14,133,159,119),(15,134,160,120),(21,61,28,68),(22,62,29,69),(23,63,30,70),(24,64,26,66),(25,65,27,67),(36,76,55,95),(37,77,51,91),(38,78,52,92),(39,79,53,93),(40,80,54,94),(41,81,48,88),(42,82,49,89),(43,83,50,90),(44,84,46,86),(45,85,47,87),(96,155,115,136),(97,151,111,137),(98,152,112,138),(99,153,113,139),(100,154,114,140),(101,148,108,141),(102,149,109,142),(103,150,110,143),(104,146,106,144),(105,147,107,145)])
Matrix representation ►G ⊆ GL6(𝔽41)
18 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
40 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 2 |
0 | 0 | 40 | 0 | 39 | 0 |
0 | 0 | 0 | 40 | 0 | 40 |
0 | 0 | 1 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 9 | 0 | 0 | 0 | 0 |
0 | 0 | 18 | 28 | 0 | 0 |
0 | 0 | 28 | 23 | 0 | 0 |
0 | 0 | 23 | 13 | 23 | 13 |
0 | 0 | 13 | 18 | 13 | 18 |
40 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 1 | 0 | 1 | 0 |
0 | 0 | 0 | 1 | 0 | 1 |
40 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 39 | 0 |
0 | 0 | 0 | 40 | 0 | 39 |
0 | 0 | 1 | 0 | 1 | 0 |
0 | 0 | 0 | 1 | 0 | 1 |
G:=sub<GL(6,GF(41))| [18,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,0,40,0,1,0,0,1,0,40,0,0,0,0,39,0,1,0,0,2,0,40,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[1,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,9,0,0,0,0,0,0,18,28,23,13,0,0,28,23,13,18,0,0,0,0,23,13,0,0,0,0,13,18],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,1,0,0,0,0,40,0,1,0,0,0,0,1,0,0,0,0,0,0,1],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,1,0,0,0,0,40,0,1,0,0,39,0,1,0,0,0,0,39,0,1] >;
170 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2I | 4A | ··· | 4X | 5A | 5B | 5C | 5D | 10A | ··· | 10L | 10M | ··· | 10AJ | 20A | ··· | 20CR |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 5 | 5 | 5 | 5 | 10 | ··· | 10 | 10 | ··· | 10 | 20 | ··· | 20 |
size | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 2 | ··· | 2 | 1 | 1 | 1 | 1 | 1 | ··· | 1 | 2 | ··· | 2 | 2 | ··· | 2 |
170 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | - | ||||||||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C4 | C5 | C10 | C10 | C10 | C10 | C10 | C20 | 2+ (1+4) | 2- (1+4) | C5×2+ (1+4) | C5×2- (1+4) |
kernel | C5×C23.33C23 | C10×C4⋊C4 | C5×C42⋊C2 | D4×C20 | Q8×C20 | C10×C4○D4 | C5×C4○D4 | C23.33C23 | C2×C4⋊C4 | C42⋊C2 | C4×D4 | C4×Q8 | C2×C4○D4 | C4○D4 | C10 | C10 | C2 | C2 |
# reps | 1 | 3 | 3 | 6 | 2 | 1 | 16 | 4 | 12 | 12 | 24 | 8 | 4 | 64 | 1 | 1 | 4 | 4 |
In GAP, Magma, Sage, TeX
C_5\times C_2^3._{33}C_2^3
% in TeX
G:=Group("C5xC2^3.33C2^3");
// GroupNames label
G:=SmallGroup(320,1522);
// by ID
G=gap.SmallGroup(320,1522);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-5,-2,-2,1120,1149,891,2467,304]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^5=b^2=c^2=d^2=f^2=1,e^2=d,g^2=c,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,f*b*f=b*c=c*b,b*d=d*b,b*e=e*b,b*g=g*b,c*d=d*c,g*e*g^-1=c*e=e*c,g*f*g^-1=c*f=f*c,c*g=g*c,d*e=e*d,d*f=f*d,d*g=g*d,e*f=f*e>;
// generators/relations